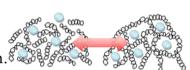
Concentration of thixotropy

Hyogo Prefecture KOBE High School Sougourigaku course Nozomi Sakai Chihiro Nagate Chiko Nishikawa Mai Miyake

<Purpose>

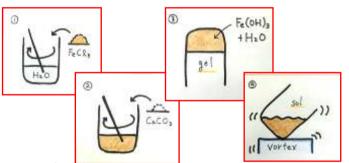
- 1, Search for the correct ratio of Al(OH)₃ to H₂O so that Al(OH)₃ colloid shows thixotropic nature.
- 2, When the colloid shows thixotropic nature. Compare the ratio of the dispersion medium to the dispersion of plural colloid.

And, check whether there is a common point or not.


<Result>

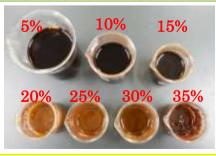
We found that $Fe(OH)_3$ colloid shows thixotropic nature most conspicuously when concentration of $Fe(OH)_3$ in H_2O solution is about 19%. We found that $Al(OH)_3$ colloid shows concentration dependence.

We couldn't have found any common points among plural colloid.


<Thixotropic nature>

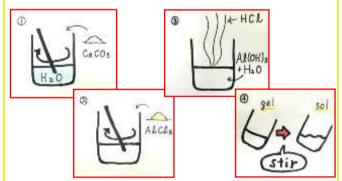
Thixotropy is the nature which some fluids have. If the fluid comes to rest, it becomes gel. If the fluid is mixed, it becomes sol. Particles of a colloid form a network structure, Thixotropy happen.

 $FeCl_3 + 3 H_2O \rightarrow Fe(OH)_3 + 3 HCl$ $CaCO_3 + 2 HCl \rightarrow CaCl_2 + H_2O + CO_2$



Result \downarrow (Table 1)

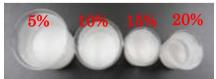
Concentration	Observations	Thixotropic nature	Concentration of colloid
40%	Overflowed.	_	_
35%	Dark brown. Gel.	Δ	28%
30%	Brown. Gel.	0	23%
25%	Light brown. Gel.	0	19%
20%	Light brown. Look like pudding.	Δ	15%
15%	Light brown. Sol.	×	11%
10%	Dark brown. Sol.	×	7%
5%	Dark brown. Sol.	×	3%


 \bigcirc : good \triangle : middle \times : bad

(→this picture is observations of the experiments. From 5 to 35% starting from the upper left.)

< Aluminum hydroxide colloid>

 $AlCl_3+3H_2O\rightarrow Al(OH)_3+3HCl$ $6HCl+3CaCO_3\rightarrow 3CaCl_2+3H_2O+3CO_2$



Measured value ↓ (Table 2)

	20%	15%	10%	5%
H ₂ O	31.99 g	$45.28\mathrm{g}$	71.99 g	151.98 g
CaCO ₃	9.06 g	9.02 g	9.00 g	9.01 g
AlCl ₃	8.06 g	7.99 g	8.03 g	8.06 g

Result ↓ (Table 3)

Concentration	Observations	Thixotropic nature	Concentration of colloid
20%	White. Gel.	0	13%
15%	White . Gel.	0	10%
10%	White. Sol.	×	6%
5%	White. Sol.	×	3%

(←From 5 to 20% starting from the left.)

<From now on>

We found that a colloid of $Al(OH)_3$ showed thixotropy depending on concentration. From now on, we will make a colloid of $Al(OH)_3$ by changing each concentration for which a colloid of $Al(OH)_3$ shows thixotropy. Future research is ①To change the concentration ②To get accuracy of the result of $Fe(OH)_3$ experiment. We want to solve these problems.